TUTI

FusedMM- A Unified SDDMM-SpMM Kernel for
Graph Embedding and Graph Neural Networks

Haru Kobayashi

What is FusedMM?

A single operation to replace the separate SDDMM and SpMM steps in
Graph Neural Networks and Graph Embedding.

It is 34x faster than its equivalent kernels in Deep Graph Library

SDDMM

=

SpMM

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Workflow of a GNN

The workflow of a traditional GNN is 5 steps.

Message Stacking Output Layer Training

Initialization ;
Passing Layers and

Prediction

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Operation of a GNN

Traditional GNN separates “Message Passing” phase into two steps:

1 3 4
Message
Passing
Step 1: Message Generation Step 2: Message Aggregation
(SDDMM) (SpMM)
Generate unique message for Collect and re-read, process all

every node messages

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Current Framework Limitations

Traditional GNN separates “Message Passing” phase into two steps:
... forcing applications to generate intermediate outputs from SDDMM.

L4

4
L4

b.t
Step 1: Message Step 2: Message
Generation Aggregation
(SDDMM) (SpMM)
H=XxY")()A H Z=HxY

*In this paper, matrices are denoted as follows; A = the adjacency matrix, X = features of the current subset of vertices, Y = feature of all vertices, and Z = updated features of the
cumrent subset of vertices. Full details-> See appendix

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Memory Traffic!

Tl
Introducing FusedMM as a Solution

A memory efficient message passing operation, that has a generalized formula to fit different
problems.

No Intermediate Matrix!

Step 1: Message Step 2: Message
Generation Aggregation
(SDDMM) (SpMM)
H=(XxYH()A. Z=HxY
(")Q Zy = @ qb(xu,xv;w(xu,xvaau'v))-
vEN (u)
Memory = 0(md + nd + nnz) + 0(d - nnz) Memory = 0(md + nd + nnz) + 0
Memory(H) Memory(H)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 7

Introducing FusedMM as a Solution

The anatomy of FusedMM can be roughly
Algorithm 1 The FusedMM algorithm

explalned in two partS' — Input: A: the adjacency matrix, X: the dense embedding
matrices of dimension m Xxd, Y: the dense embedding matrices
of dimension nxd Output: Z: an m x d matrix
1: procedure FUSEDMM(A,X)Y)
2: {A1,...,A;} < PARTID(A) © nnz(A;)~1nnz(A)
P I I I' t' — 3 {Xi1,..., X} < PARTID(X) > nrow(X;)=nrow(A;)
© Parallelization ;o (K oD » () mow)
5 for each row u of A; do > Iterate over rows
6: x, — X;[u,:] a, — Ajfu,]
7 z,, +UPDATEU(a,, Xy, Y)
— 8 return Z
J— 9: procedure UPDATEU(a,,x,, Y) > Message generation
and aggregation for the vertex u
10: Z, +— 0
11: for each v with a,,, #0 do
12: Yo — Y[v,]
- 13: z «—VOP(xy, yu)
© Computation — - iSrow
15: h + SOP(s or z) > directly use z if ROP is a
NOOP, otherwise use s
16: w < MOP(h,y,)
17: z, +— AOP(z,,w)
— 18: return z,,

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Parallelization

FusedMM uses thread-level parallelism based on 1D partitioning.

n
Work is split by vertices & balanced by nnz. Yt d
s d d
One thread owns z,,, so it’s sync-free. T T T T T e
m ’ = Part 2
Vs Part3
X A Z

procedure FUSEDMM(A, X,Y)
{Ai,..,A} < PARTID(A) > nnz(A;)~7nnz(A)
{Xy,..., X} « PARTID(X) > nrow(X;)=nrow(A;)

for i € 1..t in parallel do > Thread parallel
for ecach row u of A; do b Iterate over rows
Maximized Xy ¢ Xifu,)] ay + Afu,]
. . . z,, +-UPDATEU(a,,X,, Y)
memory-bandwidth efficiency return 7.

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

2. Computation

UpdateU: The core procedure of FusedMM

Algorithm 1 The FusedMM algorithm

~ Input: A: the adjacency matrix, X: the dense embedding
matrices of dimension mxd, Y: the dense embedding matrices
of dimension nxd Output: Z: an m x d matrix
1. procedure FUSEDMM(A, X|Y)
2 {Ai1,..,A;} « PARTID(A) > nnz(A;)~1nnz(A)
a Parallelization — % {Xy..X,} ¢ PARTID(X) > nrow(X,)—nrow(A.)
4: for i € 1..t in parallel do > Thread parallel
5 for each row u of A; do > Iterate over rows
6: x, — Xi[u,:] ay + Ajy,
7: z,, < UPDATEU(a,, Xy, Y)
- 9. o
—
and aggregation for the vertex w
107 m U
11: for each v with a,,,, #0 do
12: Yo < Yu,]
- 13: z < VOP(x,, ¥.)
© Computation — L e
15: h < SOP(s or z) > directly use z if ROP is a
NOOP, otherwise use s
16: w < MOP(h,y,)
17: z, < AOP(z,,w)
— 18: return z,,

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 10

The Core Computations of UpdateU

The whole computation in UpdateU is decomposed into 5 steps:

VOP: ROP: SOP: MOP:

Vector Reduction Scaling Multiplication
Operation Operation Operation Operation

All steps are Level-1 BLAS and SIMD-friendly
...Works Well on CPUs!

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

AOP:

Accumulation
Operation

4...................................}

11

TUTI
The Core Computations of UpdateU

Many applications can be expressed by different combinations of VOP ~ AOP operations.

» FusedMM is a very flexible operation!

Application VOP ROP SOP MOP AOP

Graph Layout ADD NORM? SCAL MUL ASUM
Node embedding MUL RSUM SIGMOID MUL ASUM
Graph Convolution Network SEL2ND NOOP NOOP MUL ASUM
Graph Neural Network with MLP MLP! NOOP SIGMOID MUL AMAX

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 12

Additional Optimization of FusedMM

Optimizing the whole kernel by feeding the output of one operation directly to the next
operation without storing the results.

Process feature dimensions Reuse loaded data
in small blocks across multiple operations

< > US>
&
<_ >
J

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

13

Additional Optimization of FusedMM for
sigmoid-based graph embedding

Y3 ¥s
Steps of UpdateU with SIMD optimization H

Load feature blocks
Load blocks of x,, into SIMD registers (V).

For each neighbor loop:
1. Load y, and Compute dot product.
2. Apply sigmoid and Broadcast the result.
3. Multiply and Accumulate.

Store Z, after the loop

Vd, ; |Vd,, § iVdy | Vdo

VZu_I l VZu_z
Non temporal Memory write

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 14

TUTI

Optimizing FusedMM with Code Generation Tool

Optimizing by hand is a lot of work because there are many patterns with 5 steps, also
different hardware architectures.

Provide a common
macro interface that
hides architecture-
specific details.

Code Generation Tool: Extract

/ Machine specific SIMD intrinsic codes

X86(AVXZ, | OpenPower | ARM64
AVX,SSE) (VSX) (ASIMD)

simd.h

genkern = genhead = genmake

Code generation tool

Machine independent macros

Extract

Source

Generated files =
\ files

Header
files

Metalanguage \

gen*.base

base files for code generation

Make files /

Use metalanguage
to generate
templates for
different
architectures.

Follows Automatically Tuned Linear Algebra Software (ATLAS) approach!

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

15

Experimental Results

1.Kernel time performance
2.Sensitivity Analysis
3. Application-Level Speedup

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

16

1. Kernel time performance on Intel

FusedMM (with SIMD optimization) is up to 34x faster than equivalent DGL kernels.
Speedup is achieved with FusedMM without optimization as well.

Performance on Intel Server

Graph Embedding FR model GCN
Dimensions (d) Di i Dimensions (d)
Graphs Methods 32 64 128 256 512 32 64 512 | 32 | 64 128 256 512
DGL 0766 1.394 3.275 8.077 18.236| 2.547 4.015 X 0859 1.644 371 8681 x

FusedMM 0.506 0.859 1.648 3.016 5.703 | 0510 0.892 5.921| 0.343 0.498 0.872 1.442 2579

Ogbprot. FusedMMopt | 0.226 0.247 0345 0.775 1358 | 0.222 0.249 1.409| 0.114 0.122 0.166 0.449 0.74
Speedup 3.385 5.655 9.488 10.428 13.433| 11.487 19.73 - 7.535 13.475 22349 19334 -
DGL 0.112 0.234 0493 1.121 2.628 | 0.192 0.340 3.007| 0.091 0.168 0338 0.765 1.798
Youtube FusedMM 0.033 0.055 0.090 0.161 0296 | 0.032 0.049 0.306| 0.026 0.037 0.061 0.119 0226
FusedMMopt | 0.026 0.032 0.058 0.123 0.226 | 0.024 0.033 0.231| 0.019 0.035 0.061 0.106 0.164
Speedup 4255 7.258 8.463 9.080 11.647| 7.899 10.290 13.04] 4789 4.800 5.541 7.217 10963
DGL 1.760 3.336 6.851 15.734 34.014| 4.044 7.682 X 1.045 1.922 3993 8.137 x
Orkut FusedMM 0969 1.601 3.247 5.441 9.665 | 0.993 1.662 9.758| 0.746 = 1.076 2.077 3.71 6.083

FusedMMopt | 0.346 0.523 0951 3.117 4961 | 0327 0.506 0:978 3:036 5.369| 0.15 0.241 0451 1462 2.543
Speedup 5.080 6.381 7.202 5.048 6.856 | 12.372 15.192 14.414 - - 6.967 7975 8854 5566 -

*Kernel time (in sec.).

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

17

1. Kernel time performance on Intel

Speedup increases with higher feature dimension.

Performance on Intel Server

Graph Embedding FR model GCN
Dimensions (d) Dimensions (d) Dimensions (d)
Graphs Methods 32 64 128 256 512 32 64 128 256 512 | 32 | 64 128 256 512
DGL 0766 1.394 3.275 8.077 18.236| 2.547 4915 11.115 23.320 X 0859 1.644 371 8681 x
Osborat FusedMM | 0.506 0.859 1.648 3.016 5703 | 0.510 0.892 1737 3.124 5921| 0.343 0498 0872 1.442 2579
8OPIOL 1 FysedMMopt [umme " 222 0249 0323 0730 1409 0.114 0.122 0.166 0449 074
Speedup 13.433 | B.487 19.737 34389 31.947 - 7535 13.475 22349 19334 -
DGL : 192 0340 0638 1335 3.007] 0.091 0168 0338 0.765 1.798
Youtube | _FusedMM | 0.033 0.0 0.032 0049 0099 0.165 0306 0.026 0037 0061 0.119 0226
FusedMMopt | 0.026 0.0 . vz W26 | 0.024 0033 0057 0.121 0231 0019 0035 0061 0.106 0.164
Speedup 4255 7.258 8.463 9.080 11.647| 7.899 10290 11.174 11.007 13.04] 4789 4.800 5.541 7.217 10.963
DGL 1760 3.336 6.851 15.734 34.014| 4.044 7.682 14.098 x X 1.045 1922 3993 8.137 x
Orkut FusedMM | 0.969 1.601 3.247 5.441 9.665 | 0.993 1.662 3.352 5975 9758 0746 1.076 2077 371 6.083
FusedMMopt | 0.346 0.523 0951 3.117 4961 | 0327 0506 0978 3.036 5369 0.15 0241 0451 1462 2.543
Speedup 5089 6.381 7.202 5.048 6.856 | 12.372 15.192 14.414 - - 6967 7975 8854 5566 -

*Kernel time (in sec.)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Kernel time performance on Intel

FusedMM (with/without SIMD optimization) did not face the out-of-memory issue like DGL

during the experiment.

Performance on Intel Server

Graph Embedding FR model GCN
Dimensions (d) Dimensions (d) Dimensions (d)
Graphs Methods 32 64 128 256 512 32 64 128 256 32 64 128 256
DGL 0.766 1.394 3275 8.077 18.236| 2.547 4915 11.115 23.32“ 0.859 1.644 371 8681 #“
Osborat FusedMM | 0.506 0.859 1.648 3.016 5.703 | 0.510 0.892 1737 3.124 "=wgeme8 (343 (498 0.872 1.442 Sy
EOPIOL | BusedMMopt | 0.226 0.247 0345 0775 1358 | 0222 0249 0323 0.730 1409 0.114 0.122 0166 0449 0.74
Speedup 3385 5.655 9.488 10.428 13.433| 11.487 19.737 34380 31.947 - 7535 13.475 22349 19.334 -
DGL 0.112 0234 0493 1.121 2628 | 0.192 0340 0638 1335 3.007] 0.091 0.168 0338 0.765 1.798
Youtube | FusedMM | 0.033 0.055 0090 0161 0296 | 0.032 0.049 0099 0.65 0306 0.026 0037 0061 0.119 0226
FusedMMopt | 0.026 0.032 0058 0.123 0226 | 0.024 0033 0057 0.121 0231] 0.019 0035 0061 0.106 0.164
Speedup 4255 7.258 8.463 9.080 11.647| 7.899 10.290 11.174_11.00 04| 4789 4.800 5541 7217 _10.96
DGL 1760 3.336 6.851 15.734 34.014| 4.044 7.682 14.09 1.045 1922 3993 8.137
Orkut FusedMM | 0.969 1.601 3247 5.441 9.665 | 0.993 1.662 3.352 "= Y 0746 1.076 2077 3.71 50
FusedMMopt | 0.346 0.523 0951 3.117 4961 | 0327 0506 0978 3.036 5369 0.15 0241 0451 1462 2.543
Speedup 5.089 6381 7.202 5.048 6.856 | 12.372 15.192 14.414 - - 6.967 7975 8854 5566 -

*Kernel time (in sec.)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

19

1. Kernel time performance on Intel:
Roofline Analysis

Roofline model for Ogbprot., Youtube, and Orkut

140 | r STREAM bandwidth on Intel server = 100 GB/s
= 120+ .
gmo MAX BIW: 100G FusedMM = 63 GFLOP/s (Orkut)
S %0 Pmax = 95 GFLOP/s
=
g8 60 < Ogbprot.
v
27 Youtub

204 ® < Youtube

» approx. 66% of the bandwidth roof.

0.2 04 0.6 0.8 1 12 14
Arithmetic Intensity (A.L)

*on Intel server for graph embedding

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 20

2. Sensitivity Analysis

FusedMM on 32 cores is ~20x faster than its sequential runtime.
Consistently faster than DGL at all thread counts.

(a) Strong scaling for Orkut graph

~

W

--DGL
—FusedMM

o]

Speedup in log-scale

1 2 4 8 16 32
Number of cores
* Graph Embedding using Orkut graph (d = 256)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

21

2. Sensitivity Analysis

Memory requirement of DGL grows linearly with d while the memory consumption of
FusedMM remains stable.

Memory consumption: DGL vs. FusedMM

S s _
2! mDGL
= Bl FusedMM
£
o
2
e
)
=
)
2 JI

10*

16 32 64 128 256

Dimensions (d)

*the FR model for Ogbprot (in megabytes)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

22

3. Application-Level Speedup

A complete Al training session is accelerated by 28x.

Kernel-level optimization translates directly to application-level speedup.

Comparison with PyTorch, DGL and FusedMM

Pubmed Graphs Method
3.0 PyTorch
Cora DGL
25 FusedMM
PyTorch
2.0 Pubmed DGL
FusedMM

1.5

Total Time (Sec.)

1.0

0.5

0.0

PyTorch DGL FusedMM

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Total Time (Sec.)
0.342
0.177
0.007
2.590
1.415
0.057

Speedup
48.9x
25.3%

1.0x

Fd /]

UX

*Graph Embedding application time, d=128, batch size = 256

23

Performance on servers other than Intel

FusedMM performs equally well on Intel, AMD, and ARM processors.

Speedup is up to 19.2x on AMD, up to 11.4x on ARM.

Kernel time on AMD server (d = 128)

Kernel Time (sec.) in log scale

(a) FR: DGL vs. FusedMM

(b) Embedding: DGL vs. FusedMM

EEDGL
ElFusedMM

Harvard Flickr Amazon Youtube

Kernel Time (sec.) in log scale

EEDGL
Il FusedMM

3.6x

Harvard Flickk Amazon Youtube

Kernel time on ARM server (d = 128)

Kernel Time (sec.) in log scale

(a) FR: DGL vs. FusedMM

Harvard Flickr ~ Amazon Youtube

Kernel Time (sec.) in log scale

Harvard Flickr Amazon Youtube

Kernel Time (sec.) in log scale

Harvard

Flickr

Amazon Youtube

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

24

What is achieved and What’s more?”?

* Reduced memory traffic
« Dramatic kernel time speedup
* Good performance on various servers (Intel, AMD, and ARM)

Next - GPU implementation

 SIMD — SIMT (warp as vector)
e Tensor Cores
* Limited benefit

Possibilities

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

25

Appendix

List of notations used in the paper

TABLE I: List of notations used in the paper

Symbol

Description

AxB
ACOB

auv = Alu,v]
Xy = X[u, 1]
ay = Aluy,]

A sparse matrix with dimension: m X n

The number of rows in A

The number of columns in A

The number of non-zero elements in A

The dimension of embedding

A dense input matrix with dimension: m X d
A dense input matrix with dimension: n X d
A dense output matrix with dimension: m X d
Matrix-matrix multiplication

Element-wise multiplication

features of the edge (u,v)

d-dimensional feature vector of vertex u

uth row of the adjacency matrix

storing edges adjacent to u

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

27

Experimental Setup

Baseline:

« DGL (version 0.5.2)
* PyTorch (version 1.5.1)

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Property Intel AMD ARM ThunderX Graphs | #Vertices #Edges Avg. Degree | Max. Degree
Skylake 8160 | EPYC 7551 CN8890 Cora 2708 5278 3.90 168
Clock 2.10 GHz 2 GHz 1.9 GHz Harvard 15126 824617 109.03 1183
o L1 cache 32KB 32KB 32KB Pubmed 19717 44324 4.49 171
S | L2 cache IMB 512KB X Flickr 89250 449878 10.08 5425
LLC 32MB 8MB 16MB Ogbprot. 132534 39561252 597 7750
Sockets 2 2 1 Amazon 334863 925872 5.59 549
% Cores/soc. 24 32 48 Youtube 1138499 2990443 5.25 28754
Z, Memory 256GB 128GB 64GB Orkut 3072441 117185083 76.28 33313
- Compiler gcc 10.1.0 gee 5.4.0 gee 7.5.0
[f] Flags 03, mavx512f, 03, mavx, 03, asimd,
£ mavx312dq mfma armv8-a

28

TUTI

Limitations and Trade-offs of FusedMM

Less effective if:
 Messages must be reused
» Benefits decrease if messages are reused multiple times

Best for memory-bound sparse workloads, single-pass message generation +
aggregation.

Trade-Offs

Reduced optimization freedom
* no separate tuning of SDDMM / SpMM
» fixed execution order, 1D partitioning only

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 29

Current Framework Limitations

(a) The vertex
viand its
neighbors

[Z)

Uy

(7 v8

(b) SDDMM

X4

Y2 W

AST N

BWN

BWON

Y2 Vs ¥s
Y
| |
©-o—o—P
hlZ hl4 '
h18
H

d(xy hyy,)

(c) SpMM

=z1

» x1 denotes the feature vector of v1.
* y2,y4, and y8 denote feature vectors of v1’s neighbors v2, v4, and v8.
« An SDDMM is used to generate messages h12, h14, and h18 for the edges adjacent to v1.

 The messages are aggregated using an SpMM operation that generates the updated vector z1 for v1.

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

30

The Core Computations of UpdateU

To remain flexible for diverse applications, the whole computation in UpdateU is
splitted into 5 steps:

ROP: SOP: MOP: AOP:

VOP:
Accumulation

Operation

Reduction
Operation

\/=Tei(e]g
Operation

Scaling Multiplication
Operation Operation

takes two reduces a scales a multiplies a accumulates
vectors of the vector to a vector/scalar vector element- vectors by
same length, scalar. using a linear or wise by another combining each
multiplies them nonlinear vector or scales incoming
and outputs a function. it by a scalar, message vector
new vector of producing a with the current
the same size. vector of the result
same length.

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 31

The Core Computations of UpdateU

The whole computation in UpdateU is decomposed into 5 steps:

AOP:

MOP:
Multiplication
Operation

VOP: ROP: SOP:
Vector Reduction Scaling
Operation Operation Operation

Accumulation
Operation

|

Zy = 69: Cb(xusxva w(XmXu, au'v))-

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 32

TLTI
Experimental Results: Comparison w/ Intel MKL SpMM

Despite being a multipurpose kernel, FusedMM can match the vendor-optimized SpMM.

Single Thread 48 Threads (2 soc.)
Graphs Method o, /)¢ 256 64 128 256
Ogbprot MKL 1.017 2310 5318 0.034 0.094 0.264
" FusedMM = 0.951 1.990 4.125 0.031 0.075 0.336

MKL 0.142 0310 0.606 0.012 0.031 0.071
FusedMM 0.132 0.261 0.524 0.015 0.028 0.082
MKL 6.336 14.356 29.348 0.380 0.852 1.961
FusedMM 5.876 11.897 23.292 0.389 0.828 2.775

Youtube

Orkut

*Kernel time (in sec.) of SpMM on Intel server for various
dimensions. Best value is marked in bold.

Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel 33

	Slide 1: FusedMM- A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks
	Slide 2: What is FusedMM?
	Slide 3: The Workflow of a GNN
	Slide 4: The Core Operation of a GNN
	Slide 5: Current Framework Limitations
	Slide 6: Current Framework Limitations
	Slide 7: Introducing FusedMM as a Solution
	Slide 8: Introducing FusedMM as a Solution
	Slide 9: 1. Parallelization
	Slide 10: 2. Computation
	Slide 11: The Core Computations of UpdateU
	Slide 12: The Core Computations of UpdateU
	Slide 13: Additional Optimization of FusedMM
	Slide 14: Additional Optimization of FusedMM for sigmoid-based graph embedding
	Slide 15: Optimizing FusedMM with Code Generation Tool
	Slide 16: Experimental Results
	Slide 17: 1. Kernel time performance on Intel
	Slide 18: 1. Kernel time performance on Intel
	Slide 19: 1. Kernel time performance on Intel
	Slide 20: 1. Kernel time performance on Intel: Roofline Analysis
	Slide 21: 2. Sensitivity Analysis
	Slide 22: 2. Sensitivity Analysis
	Slide 23: 3. Application-Level Speedup
	Slide 24: Performance on servers other than Intel
	Slide 25: What is achieved and What’s more?
	Slide 26: Appendix
	Slide 27: List of notations used in the paper
	Slide 28: Experimental Setup
	Slide 29: Limitations and Trade-offs of FusedMM
	Slide 30: Current Framework Limitations
	Slide 31: The Core Computations of UpdateU
	Slide 32: The Core Computations of UpdateU
	Slide 33: Experimental Results: Comparison w/ Intel MKL SpMM

