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A single operation to replace the separate SDDMM and SpMM steps in 

Graph Neural Networks and Graph Embedding.

It is 34x faster than its equivalent kernels in Deep Graph Library
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What is FusedMM?

FusedMM

SDDMM

SpMM



The workflow of a traditional GNN is 5 steps.
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The Workflow of a GNN
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Traditional GNN separates “Message Passing” phase into two steps:
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The Core Operation of a GNN
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Step 1: Message Generation 

(SDDMM)

Step 2: Message Aggregation 

(SpMM)

Generate unique message for 

every node

Collect and re-read, process all 

messages



Traditional GNN separates “Message Passing” phase into two steps:

... forcing applications to generate intermediate outputs from SDDMM.
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Current Framework Limitations

Step 1: Message 

Generation

 (SDDMM)

Step 2: Message 

Aggregation

 (SpMM)

*In this paper, matrices are denoted as follows; A = the adjacency matrix, X = features of the current subset of vertices, Y = feature of all vertices, and Z = updated features of the 

current subset of vertices. Full details-> See appendix



Traditional GNN separates Message Passing phase into two steps:

... forcing applications to generate intermediate outputs from SDDMM.
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Current Framework Limitations

Step 1: Message 

Generation

 (SDDMM)

Step 2: Message 

Aggregation

 (SpMM)

*In this paper, matrices are denoted as follows; A = the adjacency matrix, X = features of the current subset of vertices, Y = feature of all vertices, and Z = updated features of the 

current subset of vertices. Full details-> See appendix

Memory Traffic!



A memory efficient message passing operation, that has a generalized formula to fit different 

problems.

7Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Introducing FusedMM as a Solution

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑂(𝑚𝑑 + 𝑛𝑑 + 𝑛𝑛𝑧) + 𝑂 𝑑 ⋅ 𝑛𝑛𝑧

No Intermediate Matrix!

SDDMM + SpMM FusedMM

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑂(𝑚𝑑 + 𝑛𝑑 + 𝑛𝑛𝑧) + 0

Memory(H) Memory(H)



The anatomy of FusedMM can be roughly 

explained in two parts:

8Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Introducing FusedMM as a Solution

Parallelization

Computation

1

2



FusedMM uses thread-level parallelism based on 1D partitioning.

Work is split by vertices & balanced by nnz.

One thread owns 𝑧𝑢, so it’s sync-free.
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1. Parallelization

Maximized

memory-bandwidth efficiency



UpdateU: The core procedure of FusedMM
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2. Computation

Parallelization

Computation

1

2



The whole computation in UpdateU is decomposed into 5 steps:
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The Core Computations of UpdateU

VOP:

Vector 

Operation

1

ROP:

Reduction 

Operation

2

SOP:

Scaling 

Operation

3

MOP:

Multiplication 

Operation

4

AOP:

Accumulation 

Operation

5

All steps are Level-1 BLAS and SIMD-friendly

...Works Well on CPUs!



Many applications can be expressed by different combinations of VOP ~ AOP operations.
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The Core Computations of UpdateU

FusedMM is a very flexible operation!



Optimizing the whole kernel by feeding the output of one operation directly to the next 

operation without storing the results.
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Additional Optimization of FusedMM

Process feature dimensions

in small blocks

Reuse loaded data

across multiple operations



Load feature blocks

Load blocks of 𝑥𝑢 into SIMD registers (V).

For each neighbor loop:

1. Load 𝑦𝑣 and Compute dot product.

2. Apply sigmoid and Broadcast the result.

3. Multiply and Accumulate.

Store 𝒁𝒖 after the loop
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Additional Optimization of FusedMM for 
sigmoid-based graph embedding

Steps of UpdateU with SIMD optimization
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Optimizing FusedMM with Code Generation Tool

Optimizing by hand is a lot of work because there are many patterns with 5 steps, also 

different hardware architectures.

Code Generation Tool: Extract

Use metalanguage

to generate

templates for

different 

architectures.

Provide a common

macro interface that

hides architecture-

specific details.

Follows Automatically Tuned Linear Algebra Software (ATLAS) approach!



1.Kernel time performance 

2.Sensitivity Analysis

3.Application-Level Speedup
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Experimental Results



FusedMM (with SIMD optimization) is up to 34x faster than equivalent DGL kernels.

Speedup is achieved with FusedMM without optimization as well.
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1. Kernel time performance on Intel

*Kernel time (in sec.).

Performance on Intel Server



Speedup increases with higher feature dimension.
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1. Kernel time performance on Intel

*Kernel time (in sec.)

Performance on Intel Server



FusedMM (with/without SIMD optimization) did not face the out-of-memory issue like DGL 

during the experiment.
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1. Kernel time performance on Intel

*Kernel time (in sec.)

Performance on Intel Server



STREAM bandwidth on Intel server = 100 GB/s

FusedMM ≈ 63 GFLOP/s（Orkut）

𝑃𝑚𝑎𝑥 ≈ 95 GFLOP/s

          approx. 66% of the bandwidth roof.
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1. Kernel time performance on Intel: 
    Roofline Analysis

*on Intel server for graph embedding



FusedMM on 32 cores is ∼20x faster than its sequential runtime.

Consistently faster than DGL at all thread counts.
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2. Sensitivity Analysis

* Graph Embedding using Orkut graph (d = 256)



Memory requirement of DGL grows linearly with d while the memory consumption of 

FusedMM remains stable.
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2. Sensitivity Analysis

*the FR model for Ogbprot (in megabytes)
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3. Application-Level Speedup

A complete AI training session is accelerated by 28x.

Kernel-level optimization translates directly to application-level speedup.

*Graph Embedding application time, d=128, batch size = 256

Comparison with PyTorch, DGL and FusedMM



FusedMM performs equally well on Intel, AMD, and ARM processors.

Speedup is up to 19.2× on AMD, up to 11.4× on ARM.
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Performance on servers other than Intel

Kernel time on ARM server (d = 128)

Kernel time on AMD server (d = 128)
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What is achieved and What’s more?

Achieved

Next

Possibilities

• Reduced memory traffic

• Dramatic kernel time speedup

• Good performance on various servers (Intel, AMD, and ARM)

• GPU implementation

• SIMD → SIMT (warp as vector)

• Tensor Cores

• Limited benefit
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Appendix
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List of notations used in the paper
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Experimental Setup

Baseline:

• DGL (version 0.5.2) 

• PyTorch (version 1.5.1)

Hardware Configurations Datasets



Less effective if:

• Messages must be reused

• Benefits decrease if messages are reused multiple times

Best for memory-bound sparse workloads, single-pass message generation + 

aggregation.

Reduced optimization freedom

• no separate tuning of SDDMM / SpMM

• fixed execution order, 1D partitioning only
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Limitations and Trade-offs of FusedMM

Trade-Offs

Limitations
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Current Framework Limitations

• x1 denotes the feature vector of v1. 

• y2, y4, and y8 denote feature vectors of v1 ’s neighbors v2, v4, and v8. 

• An SDDMM is used to generate messages h12, h14, and h18 for the edges adjacent to v1.

• The messages are aggregated using an SpMM operation that generates the updated vector z1 for v1. 



To remain flexible for diverse applications, the whole computation in UpdateU is 

splitted into 5 steps:
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The Core Computations of UpdateU

VOP:

Vector 

Operation

1
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Scaling 
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5

takes two 

vectors of the 

same length, 

multiplies them 

and outputs a 

new vector of 

the same size.

reduces a 

vector to a 

scalar. 

scales a 

vector/scalar 

using a linear or 

nonlinear 

function.

multiplies a 

vector element-

wise by another 

vector or scales 

it by a scalar, 

producing a 

vector of the 

same length.

accumulates 

vectors by 

combining each 

incoming 

message vector 

with the current 

result



The whole computation in UpdateU is decomposed into 5 steps:
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The Core Computations of UpdateU
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Despite being a multipurpose kernel, FusedMM can match the vendor-optimized SpMM.
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Experimental Results: Comparison w/ Intel MKL SpMM

*Kernel time (in sec.) of SpMM on Intel server for various 

dimensions. Best value is marked in bold.
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