
Haru Kobayashi

FusedMM- A Unified SDDMM-SpMM Kernel for
Graph Embedding and Graph Neural Networks

A single operation to replace the separate SDDMM and SpMM steps in

Graph Neural Networks and Graph Embedding.

It is 34x faster than its equivalent kernels in Deep Graph Library

2Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

What is FusedMM?

FusedMM

SDDMM

SpMM

The workflow of a traditional GNN is 5 steps.

3Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Workflow of a GNN

Initialization

1

Message

Passing

2

Stacking

Layers

3

Output Layer

and

Prediction

4

Training

5

Traditional GNN separates “Message Passing” phase into two steps:

4Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Operation of a GNN

Initialization

1

Message

Passing

2

Stacking

Layers

3

Output Layer

and

Prediction

4

Training

5

Step 1: Message Generation

(SDDMM)

Step 2: Message Aggregation

(SpMM)

Generate unique message for

every node

Collect and re-read, process all

messages

Traditional GNN separates “Message Passing” phase into two steps:

... forcing applications to generate intermediate outputs from SDDMM.

5Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Current Framework Limitations

Step 1: Message

Generation

 (SDDMM)

Step 2: Message

Aggregation

 (SpMM)

*In this paper, matrices are denoted as follows; A = the adjacency matrix, X = features of the current subset of vertices, Y = feature of all vertices, and Z = updated features of the

current subset of vertices. Full details-> See appendix

Traditional GNN separates Message Passing phase into two steps:

... forcing applications to generate intermediate outputs from SDDMM.

6Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Current Framework Limitations

Step 1: Message

Generation

 (SDDMM)

Step 2: Message

Aggregation

 (SpMM)

*In this paper, matrices are denoted as follows; A = the adjacency matrix, X = features of the current subset of vertices, Y = feature of all vertices, and Z = updated features of the

current subset of vertices. Full details-> See appendix

Memory Traffic!

A memory efficient message passing operation, that has a generalized formula to fit different

problems.

7Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Introducing FusedMM as a Solution

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑂(𝑚𝑑 + 𝑛𝑑 + 𝑛𝑛𝑧) + 𝑂 𝑑 ⋅ 𝑛𝑛𝑧

No Intermediate Matrix!

SDDMM + SpMM FusedMM

𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑂(𝑚𝑑 + 𝑛𝑑 + 𝑛𝑛𝑧) + 0

Memory(H) Memory(H)

The anatomy of FusedMM can be roughly

explained in two parts:

8Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Introducing FusedMM as a Solution

Parallelization

Computation

1

2

FusedMM uses thread-level parallelism based on 1D partitioning.

Work is split by vertices & balanced by nnz.

One thread owns 𝑧𝑢, so it’s sync-free.

9Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Parallelization

Maximized

memory-bandwidth efficiency

UpdateU: The core procedure of FusedMM

10Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

2. Computation

Parallelization

Computation

1

2

The whole computation in UpdateU is decomposed into 5 steps:

11Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Computations of UpdateU

VOP:

Vector

Operation

1

ROP:

Reduction

Operation

2

SOP:

Scaling

Operation

3

MOP:

Multiplication

Operation

4

AOP:

Accumulation

Operation

5

All steps are Level-1 BLAS and SIMD-friendly

...Works Well on CPUs!

Many applications can be expressed by different combinations of VOP ~ AOP operations.

12Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Computations of UpdateU

FusedMM is a very flexible operation!

Optimizing the whole kernel by feeding the output of one operation directly to the next

operation without storing the results.

13Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Additional Optimization of FusedMM

Process feature dimensions

in small blocks

Reuse loaded data

across multiple operations

Load feature blocks

Load blocks of 𝑥𝑢 into SIMD registers (V).

For each neighbor loop:

1. Load 𝑦𝑣 and Compute dot product.

2. Apply sigmoid and Broadcast the result.

3. Multiply and Accumulate.

Store 𝒁𝒖 after the loop

14Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Additional Optimization of FusedMM for
sigmoid-based graph embedding

Steps of UpdateU with SIMD optimization

15Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Optimizing FusedMM with Code Generation Tool

Optimizing by hand is a lot of work because there are many patterns with 5 steps, also

different hardware architectures.

Code Generation Tool: Extract

Use metalanguage

to generate

templates for

different

architectures.

Provide a common

macro interface that

hides architecture-

specific details.

Follows Automatically Tuned Linear Algebra Software (ATLAS) approach!

1.Kernel time performance

2.Sensitivity Analysis

3.Application-Level Speedup

16Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Experimental Results

FusedMM (with SIMD optimization) is up to 34x faster than equivalent DGL kernels.

Speedup is achieved with FusedMM without optimization as well.

17Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Kernel time performance on Intel

*Kernel time (in sec.).

Performance on Intel Server

Speedup increases with higher feature dimension.

18Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Kernel time performance on Intel

*Kernel time (in sec.)

Performance on Intel Server

FusedMM (with/without SIMD optimization) did not face the out-of-memory issue like DGL

during the experiment.

19Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Kernel time performance on Intel

*Kernel time (in sec.)

Performance on Intel Server

STREAM bandwidth on Intel server = 100 GB/s

FusedMM ≈ 63 GFLOP/s（Orkut）

𝑃𝑚𝑎𝑥 ≈ 95 GFLOP/s

 approx. 66% of the bandwidth roof.

20Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

1. Kernel time performance on Intel:
 Roofline Analysis

*on Intel server for graph embedding

FusedMM on 32 cores is ∼20x faster than its sequential runtime.

Consistently faster than DGL at all thread counts.

21Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

2. Sensitivity Analysis

* Graph Embedding using Orkut graph (d = 256)

Memory requirement of DGL grows linearly with d while the memory consumption of

FusedMM remains stable.

22Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

2. Sensitivity Analysis

*the FR model for Ogbprot (in megabytes)

23Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

3. Application-Level Speedup

A complete AI training session is accelerated by 28x.

Kernel-level optimization translates directly to application-level speedup.

*Graph Embedding application time, d=128, batch size = 256

Comparison with PyTorch, DGL and FusedMM

FusedMM performs equally well on Intel, AMD, and ARM processors.

Speedup is up to 19.2× on AMD, up to 11.4× on ARM.

24Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Performance on servers other than Intel

Kernel time on ARM server (d = 128)

Kernel time on AMD server (d = 128)

25Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

What is achieved and What’s more?

Achieved

Next

Possibilities

• Reduced memory traffic

• Dramatic kernel time speedup

• Good performance on various servers (Intel, AMD, and ARM)

• GPU implementation

• SIMD → SIMT (warp as vector)

• Tensor Cores

• Limited benefit

26Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Appendix

27Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

List of notations used in the paper

28Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Experimental Setup

Baseline:

• DGL (version 0.5.2)

• PyTorch (version 1.5.1)

Hardware Configurations Datasets

Less effective if:

• Messages must be reused

• Benefits decrease if messages are reused multiple times

Best for memory-bound sparse workloads, single-pass message generation +

aggregation.

Reduced optimization freedom

• no separate tuning of SDDMM / SpMM

• fixed execution order, 1D partitioning only

29Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Limitations and Trade-offs of FusedMM

Trade-Offs

Limitations

30Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Current Framework Limitations

• x1 denotes the feature vector of v1.

• y2, y4, and y8 denote feature vectors of v1 ’s neighbors v2, v4, and v8.

• An SDDMM is used to generate messages h12, h14, and h18 for the edges adjacent to v1.

• The messages are aggregated using an SpMM operation that generates the updated vector z1 for v1.

To remain flexible for diverse applications, the whole computation in UpdateU is

splitted into 5 steps:

31Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Computations of UpdateU

VOP:

Vector

Operation

1

ROP:

Reduction

Operation

2

SOP:

Scaling

Operation

3

MOP:

Multiplication

Operation

4

AOP:

Accumulation

Operation

5

takes two

vectors of the

same length,

multiplies them

and outputs a

new vector of

the same size.

reduces a

vector to a

scalar.

scales a

vector/scalar

using a linear or

nonlinear

function.

multiplies a

vector element-

wise by another

vector or scales

it by a scalar,

producing a

vector of the

same length.

accumulates

vectors by

combining each

incoming

message vector

with the current

result

The whole computation in UpdateU is decomposed into 5 steps:

32Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

The Core Computations of UpdateU

VOP:

Vector

Operation

1

ROP:

Reduction

Operation

2

SOP:

Scaling

Operation

3

MOP:

Multiplication

Operation

4

AOP:

Accumulation

Operation

5

Despite being a multipurpose kernel, FusedMM can match the vendor-optimized SpMM.

33Haru Kobayashi (TUM) | Paper Review | FusedMM- A Unified SDDMM-SpMM Kernel

Experimental Results: Comparison w/ Intel MKL SpMM

*Kernel time (in sec.) of SpMM on Intel server for various

dimensions. Best value is marked in bold.

	Slide 1: FusedMM- A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks
	Slide 2: What is FusedMM?
	Slide 3: The Workflow of a GNN
	Slide 4: The Core Operation of a GNN
	Slide 5: Current Framework Limitations
	Slide 6: Current Framework Limitations
	Slide 7: Introducing FusedMM as a Solution
	Slide 8: Introducing FusedMM as a Solution
	Slide 9: 1. Parallelization
	Slide 10: 2. Computation
	Slide 11: The Core Computations of UpdateU
	Slide 12: The Core Computations of UpdateU
	Slide 13: Additional Optimization of FusedMM
	Slide 14: Additional Optimization of FusedMM for sigmoid-based graph embedding
	Slide 15: Optimizing FusedMM with Code Generation Tool
	Slide 16: Experimental Results
	Slide 17: 1. Kernel time performance on Intel
	Slide 18: 1. Kernel time performance on Intel
	Slide 19: 1. Kernel time performance on Intel
	Slide 20: 1. Kernel time performance on Intel: Roofline Analysis
	Slide 21: 2. Sensitivity Analysis
	Slide 22: 2. Sensitivity Analysis
	Slide 23: 3. Application-Level Speedup
	Slide 24: Performance on servers other than Intel
	Slide 25: What is achieved and What’s more?
	Slide 26: Appendix
	Slide 27: List of notations used in the paper
	Slide 28: Experimental Setup
	Slide 29: Limitations and Trade-offs of FusedMM
	Slide 30: Current Framework Limitations
	Slide 31: The Core Computations of UpdateU
	Slide 32: The Core Computations of UpdateU
	Slide 33: Experimental Results: Comparison w/ Intel MKL SpMM

